

Cornell Note

Solving Systems with Matrix Inversion

Today's Standard

HSA.REI.C9 - (+) Find the inverse of a matrix if it exists and use it to solve systems of linear equations (using technology for matrices of dimension 3 × 3 or greater).

Notes
Matrix inversion is the process of finding a matrix that, when multiplied by the original matrix, results in the identity matrix.
To find the inverse, calculate the determinant and use it to determine if an inverse exists. If the determinant is non-zero, use row reduction or other
methods to find the inverse.
Applications include cryptography, computer graphics, economic
modeling, engineering, and network analysis.
Inversion involves creating a matrix that undoes the original matrix's
operation, while transposition flips the matrix over its diagonal.
The determinant must be non-zero for an inverse to exist. It helps determine if a matrix is invertible.

Summary

Matrix inversion is essential for solving systems of linear equations and has numerous applications. Understanding the determinant's role and differentiating inversion from transposition are key to mastering this concept.