

Cornell Motes

Function Domains and Graphs

Today's Standard

HSF.IF.B5 - Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function h(n) gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.*

Cues	Notes
What is the domain of a function?	The domain is the set of all possible input values for a function.
How do you relate the domain to the graph?	The domain can be determined by looking at the graph and considering the context of the problem.
Why is the domain important in real-world problems?	In real-world problems, the domain is important because it defines the set of valid inputs based on the situation.
What are common misconceptions about the	Common misconceptions include thinking the domain is always all real numbers and confusing the domain with the range.
domain?	The domain refers to inputs, while the range refers to outputs. Graphs can help visualize both.
How can you differentiate between domain and range?	

Summary

Understanding the domain of a function is crucial for interpreting its graph and applying it to real-world problems. Common misconceptions can be addressed through practical examples and visual aids.