

Parent Guide to the

# Approximating Irrational Numbers

### Today's Standard

8.NS.A2 - Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g.,  $\pi$ 2). For example, by truncating the decimal expansion of  $\sqrt{2}$ , show that  $\sqrt{2}$  is between 1 and 2, then between 1.4 and 1.5, and explain how to continue on to get better approximations.

## Real-World Applications for this Standard

Estimating the value of  $\pi$  in real-world measurements.; Using  $\sqrt{2}$  in construction and design projects.; Comparing irrational numbers in financial calculations.; Locating irrational numbers on a number line in navigation systems.

#### Today I Learned

Today, we learned about approximating irrational numbers, like the square root of 2, using rational numbers. This helps us compare sizes and place them on a number line.

#### **Common Stumbling Blocks**

Some students might think irrational numbers can be written as fractions, but they can't. Others might believe that decimal approximations are exact, but they are just close estimates.

#### Quiz Me

- What is an irrational number?
- Can we write irrational numbers as fractions?
- What does it mean to approximate a number?
- How can we place irrational numbers on a number line?
- Why are decimal approximations not exact?

#### Help Me

Irrational numbers, like the square root of 2, can't be exactly written as fractions. We use decimal approximations to get close to their value. This helps in real-world tasks like measuring and comparing sizes.